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Secondary flow and turbulence in a 
cone-and-plate device 

By H. P. SDOUGOS, S. R. BUSSOLARI AND C. F. DEWEY 
Fluid Mechanics Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 

(Received 22 October 1982 and in revised form 1 September 1983) 

The flow between a shallow rotating cone and a stationary plate has been investigated 
using flow visualization, hot-film heat-transfer probes, and measurements of the 
torque required to  rotate the cone against the retardation of the viscous fluid that 
fills the device. Theory appropriate to  these experiments is also presented. 

An expansion of the Navier-Stokes equations is performed for small values of the 
single parameter a = r2wwa2/12v. (Here r is the local radius, o the angular velocity 
of the cone, a( 4 1) is the angle between the cone and plate, and v is the fluid kine- 
matic viscosity.) The measurements a t  low rotational speeds describe a simple linear 
velocity profile as predicted for the laminar flow of a Newtonian fluid. At larger 
rotational speeds, strong secondary flows are observed. There is agreement between 
the laminar theory and the measured streamline angles and shear stresses for values 
of a < 0.5. Turbulence is observed for a >, 4. 

1. Introduction 
This paper describes the secondary flow and turbulence in the fluid between a 

rotating cone and a stationary flat plate. This flow has been of substantial interest 
in the past primarily because it is a geometry used frequently in commercial 
viscometers. The motivation of the present research, however, was to develop an 
apparatus with a well-characterized flow in which damage to  living cells by fluid shear 
stress could be investigated (Dewey et al. 1981). 

This Introduction provides a physical description of the various forces acting on 
the fluid and an explicit statement of the flow pattern in the limit of very small cone 
angle and slow rotation. A single flow parameter that characterizes the flow is defined 
and a summary of other relevant investigations is also presented. The asymptotic 
expansion method used to obtain a theoretical description of laminar secondary flow 
in the device is described in $ 2. The experimental apparatus is described in $3, and 
results are presented and discussed in $4. 

1.1. Introductory description of the f low 

Cone-and-plate viscometers are conventionally operated under conditions where 
negligible secondary flow exists. I n  this case, flow streamlines are concentric circles. 
Both the gap width h(r)  and the azimuthal cone surface velocity vo(r) increase 
linearly with radius, so that the shear rate 

av 00 

az h 
- _  - _  

is identical a t  every point within the fluid as well as on the cone and plate surfaces. 
The operating requirements for testing living cells (Bussolari, Dewey & Gimbrone. 
13 FLX 13H 
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FIGURE 1. Geometry of the cone-and-plate apparatus defining the nomenclature used. 

1982) vary considerably from those that apply to normal viscometers. In  particular, 
a desirable attribute would be the ability to produce both laminar and turbulent flow 
in a single device while having the same time-average shear stress at the surface of 
the plate. It is demonstrated in $5 that this is possible. 

The variables governing the flow are summarized in figure 1 .  I n  the limit of low 
rotational speed and small cone angle, the streamlines are concentric circles and, with 
a, Newt,onian fluid, the surface shear stress is 

where ,a is the viscosity of the fluid and z is the coordinate normal to the plate. With 
a sufficiently small cone angle, t a n a  may be replaced by a,  and the shear stress 
can be expressed as 

7 = po/a, ( 2 )  

where w is the angular velocity of the cone. The surface shear stress is thus constant. 
This situation is termed primary $ow. 

As the angle a and rotational rate w increase, the fluid near the cone experiences 
an increasing centrifugal force that promotes radial fluid motion towards the 
periphery of the device. The relative magnitudes of centrifugal and viscous forces are 
measured by a parameter termed x ,  This parameter represents the ratio of the 
characteristic centrifugal force to the characteristic viscous force acting on the fluid 
a t  any radius from the centre of the cone. The characteristic centrifugal force per unit 
fluid volume can be expressed as 

where p is the fluid density. The corresponding viscous force is r / h ,  or pvo/h2.  The 
ratio of these two terms is 

centrifugal force - r2wa2 
viscous force U 

-- (4) 
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where v is the fluid kinematic viscosity p/p.  I n  the Appendix it is demonstrated that 
an  ordering of all varkbles such that the non-dimensional equations contain terms 
of order unity leads to a factor of 12 in the denominator of the parameter R. 
Henceforth the single parameter used to describe the flow is 

and thus the significant physical variables for cone-plate flow are p,  p, a, r ,  w .  

1.2. Previous descriptions of cone-and-plate $ow 
As has already been noted, by far the most common use for the rotating cone-and-plate 
configuration has been in viscometry . This device was first introduced by Mooney 
& Ewart (1934), and provides viscosity data for fluids with various stress-strain 
relations. The advantage of the cone-and-plate configuration over other viscometers 
is that shear stress and shear rate are constant throughout the fluid sample provided 
that the gap angle a (and hence 8) is kept sufficiently small. Typical commercial 
devices employ a cone angle of 0.3' and a radius of approximately 2-3 cm. Most 
previous theoretical treatments of the cone-and-plate configuration describe flows 
dominated by primary flow (Walters 1975 ; Coleman, Markovitz & No111966 ; Walters 
& Waters 1966). 

Secondary-flow phenomena in a cone-and-plate device were apparently first 
observed by Cox (1962) using dye-visualization techniques. Several analyses and 
experiments appeared contemporaneously with the observations of Cox : the exper- 
iment and analysis of Miller & Hoppmann (1963), where large cone angles were used; 
the analysis of Slattery (1961), which clearly described the conditions under which 
secondary flow could be neglected; and the experiment and detailed theory of Pelech 
& Shapiro (1964), which treated the related problem of flow between a spinning 
flexible disk and a stationary flat plate. 

Pelech & Shapiro were the first to clearly identify the parameter governing 
secondary fluid motion in this type of flow geometry as being the ratio of the fluid 
centrifugal forces to  viscous forces. They derived a parameter for their spinning- 
flexible-disk problem that is equivalent to the parameter 8 used here. Walters & 
Waters (1 966) used the dimensionless parameter L = wb2/u in their analysis, where 
w is a typical angular velocity and b is a typical length such as the cone outer radius. 
The parameter L is equivalent to 8, except that  the term a2 is omitted and the length 
paramet,er b is typical of the device as a whole and does not refer to the local radius 
of the point under investigation. Thus L does not refer to  the local ratio of viscous 
to centrifugal forces a t  any position within the apparatus. 

Walters & Waters expanded the equations of motion for small values of the 
parameter L and solved the resulting equations numerically. Two years later, Cheng 
(1968) published the first systematic data describing secondary flow. He measured 
the torque produced in a cone-and-plate viscometer and compared his results with 
the predictions of Walters & Waters, finding good agreement. The comparison 
required two independent quantities, the parameter L and the cone angle a. An 
attempt by King & Waters (1970) to extend this analysis to terms of higher order 
in the parameter L produced only marginal improvement in the agreement with 
experimental data in the range where strong secondary flow occurred. 

Savins & Metzner (1970) developed a solution for the secondary flow in a 
cone-and-plate device by using the primary flow to establish the pressure field; a 
subsequent calculation yielded the radial component of vclocity. Several of the 

13 2 
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present results, obtained by systematic expansion of the governing equations in terms 
of the parameter 8, are identical with those found by Savins & Metzner (1970). 

Turian (1972) used a two-parameter expansion method to compute secondary flow. 
His parameters were, in the present nomenclature, equivalent to L and a. He 
expanded t,he governing equations in terms of a and La2 with the assumption that 
the shear sLress on the cone and plate must be identical a t  each radial position within 
the device. The present analysis shows that this is incorrect. Heuser & Krause (1979) 
arrived a t  results similar to those of Turian, and extended the asymptotic equations 
to encompass the region near the edge of the cone. They represent the outer boundary 
by a liquid free surface. Only a perturbation solution to this outer flow is attempted. 

The most complete theoretical study of this geometry to date was completed by 
Fewell & Hellums (1977). Secondary flow was computed using finite-difference 
numerical techniques. Again, two parameters equivalent to L and a were used. One 
advantage of the finite-difference solutions (and this also holds for the earlier 
numerical results of Walters & Waters 1966) is that  the details of the flow are specified 
everywhere within the cone-plate space. I n  contrast with the solutions of Savins & 
Metzner, Turian, Pelech & Shapiro and the present calculations, Fewell & Hellums 
obtain results that  can be used to predict the extent to which the flow is modified 
by the boundary conditions at the outer edge of the cone. 

2. Theoretical description of flow in a cone-and-plate device 
This section presents a solution of the equation of motion for the flow of a 

Newtonian liquid between a shallow rotating cone and a flat plate where the angle 
a (figure 1) is typically of the order of 0.08 rad (5') or less. For such small angles, 
the ratio of the velocity w normal to the plate to  the radial velocity u will be of order 
a: W 

U 
--a<l. 

Similarly the velocity gradients normal to the plate (the z-direction) are always large 
compared with those in the radial ( r )  direction. Furthermore, the flow is taken to be 
rotationally symmetric about the cone axis so that all &direction gradients are 

- 0. 
identically-zero. Thus a a a 

- 4 - w << ( u , v ) ,  s - 
ar az' (7) 

With these simplifications, the Navier-Stokes equations in cylindrical coordinates 
reduce to the following form : 

av av azV 
@-momentum u- +w- = u - ,  

ar az az2 

lap a Z w  

aZ a22 
z-momentum 0 = - -- + v-, 

au aw 
continuity - + - + - = 0. 

ar r az 

The coordinate directions ( r ,  8 ,  z )  and corresponding velocities (u, v,  w) are defined in 
figure I .  The fluid density is p and the kinematic viscosity is u.  An additional 
approximation based on a 4 1 is tans ~ a. (12) 
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FIGURE 2. Normalized secondary-flow velocity profile i&(z). This is the 
first-order term of the radial velocity component (17). 

The reduction of the Navier-Stokes equations through order-of-magnitude estim- 
ates follows directly from the analogous case of two nearly parallel spinning disks 
(Pelech & Shapiro 1964). The resulting equations have the character of a lubrication 
problem and, consistent with that analogy, it may be demonstrated, using (8)-( 1 l ) ,  
that  

aP aP 
a Z  ar 
- 4 -, i.e. p = p ( r )  only 

The boundary conditions associated with this geometry are that the fluid is in 
intimate contact with the rotating cone and the stationary plate. The approximations 
inherent in our analysis neglect edge effects a t  the outer rim of the cone. Clearly, this 
approximation will fail within several gap heights of the cone edge, but predictions 
of the fluid behaviour in the interior of the device should not be affected. 

Solution of (8)-( 1 1 )  has been obtained by the method of asymptotic expansion and 
is presented in the Appendix. The small parameter used in this expansion is 

- r 2 W a 2  
R G -  

12v 

This parameter is a measure of the ratio of the centrifugal to viscous forces acting 
on the moving fluid. The fluid adjacent to  the rotating cone experiences a centrifugal 
force which causes a flow in the radial direction. There is a corresponding radial flow 
in the opposite direction in the fluid close to the stationary plate. The normalized 
secondary-flow velocity profile is sketched in figure 2. When B+-0 the centrifugal 
forces become small and the radial flow velocity is zero everywhere. In  this limit, 
viscous forces dominate and (9) becomes 

a Z v  WZ 
- = 0, i.e. v ( r , z )  = - 
aZ2 a 
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The viscous wall shear stress 7, is then uniform over the whole plate surface 
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This result is termed primary $ow. Fluid streamlines are concentric circles about the 
cone apex. As R' becomes larger, centrifugal forces become significant and secondary 

For small values of R (8)-( 11) may be expanded in ascending powers of 3 by using 
$ow develops. 

the following scheme : 
(17) u = wr[C0+&,+R2C,+ . . .I,  

where the non-dimensionalized velocities are designated by a tilde. All non- 
dimensionalized velocities are of order unity, and i t  is shown in the Appendix that 
the terms Go, Go, GI, 2, and G, are identically zero. The factor a appearing in front of 
the brackets in (19) is a consequence of the fact that  the ratio of w to u is of order 
a (see (6)). 

The solution, the details of which are presented in the Appendix, has been carried 
out to second-order terms in a. The following results are obtained : 

GI = 1 . 2 ( P - P ) ,  (22) 

i j z  = A( -832"+70F+632VjOzY). (23 ) 

The parameter z" is the non-dimensional distance z/ar  between the plate (x" = 0) and 
the cone ( Z =  1). 

In  the presence of secondary flow, the fluid streamlines are no longer concent)ric 
circles and the local fluid velocity vector forms an angle $ with the azimuthal 
direction (figure 4). This angle is defined by 

U 

V 
tan$ = - 

At the plate surface (z" = 0) for small 3 

#J = tan-' [-0.8R"+0(33)]. ( 2 5 )  

This prediction is compared with experimental results in $4. 
The shear stresses ~ ~ , 9  on the cone and the plate can also be expressed analytically 

from the theory. By differentiating (23) with respect, to distance normal to the plate 
and evaluating the resulting expression a t  z" = 0 and x" = 1 ,  the following relations for 
rrO are obtained: 

plate 7,0 = p ( 1  a -0.4743w2+ ...), (26) 

cone rrO = p(1 +0.9257&?+ ...). 
a 

The flow at any radius from the cone apex is considered to be a function of the local 
value of 8; hence there is no requirement that  the shear stresses on the cone and plate 
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a t  that location be equal. The two expressions (26) and (27) for azimuthal shear stress 
on the cone and plate surfaces are compared with experimental measurements and 
numerical solutions of the equations of motion in $4.  

3. Experimental methods 
The experiments reported in this paper were chosen to illustrate different aspects 

of the secondary flow and turbulence that occur in the cone-and-plate geometry. For 
the case of laminar secondary flow, the theory presented in $2  furnishes a number 
of quantitative predictions that can be compared with measurements. 

Three sets of experiments were performed. In  the first of these, flow visualization 
was used to describe the flow streamlines near the flat-plate surface and to investigate 
the onset of secondary flow and turbulence. I n  the second set of experiments, hot-film 
heat-transfer probes were used to measure the fluid shear stress a t  the plate surface. 
Lastly, experiments were performed to measure the torque required to rotate the cone 
above the flat plate. 

3.1. Flow visualization 

For the flow-visualization experiments, a Plexiglas cone-and-plate device was con- 
structed. Three interchangeable cones of standard radii 10.8 cm were made. These 
had cone angles of lo, 3' and 5' machined to  an accuracy of f0.1'. Both the cone 
and flat-plate surfaces were highly polished. A range of cone rotational rates of 
0-300 r.p.m. could be produced. 

Two sets of flow-visualization experiments were performed. In  the first of these, 
dye streaklines were entrained into the flow near the flat-plate surface in order to 
visualize the fluid streamlines under various flow conditions. The dye, a water-soluble 
black ink, was injected by means of a syringe drive, a t  three individual ports located 
at  a, t and $ of the plate radius. As the direction of the fluid velocity varies across 
the cone-plate gap, care was taken to ensure that the dye was entrained by the flow 
very near the plate surface. Once the syringe drive had brought the dye up to the 
surface of the plate, the dye was carried along, near the plate surface, by the motion 
of the fluid. Water and two water-glycerol solutions (48% and 72% by weight 
glycerol) were used to vary the viscosity of the fluid between the cone and plate. The 
ability to change the fluid viscosity, the cone angle and rotational rate, and the 
dye-injection position provided a wide range of operating conditions. 

I n  the second sect of flow-visualization experiments, a suspension of fine aluminium 
flakes (Albron Powder no. 422, Alcoa) in methanol was used to monitor the 
development of turbulence in the flow. The orientation of the flakes is dependent on 
the local shear rate of the flow. Hence in turbulent flows a locally changing reflectivity 
of the suspension is visible. All quantitative flow-visualization data were obtained 
from photographs recorded with a 35 mm camera located below the flat plate and 
looking directly up at it. 

3.2. Shear-stress measurements 

Hot-film heat-transfer probes were used to measure the fluid shear stress a t  the 
surface of the flat plate. These probes (Model 1237W, Thermo-Systems Inc.) had a 
sensor element which consisted of a small film of platinum (0.12 x 1 .0 mm) coated with 
a very thin layer of quartz for protection in liquid media. The sensor clement and 
its leads were potted in a stainless-steel tube with an outside diameter of 3.18 mm. 
The quartz surface coating was polished smooth, and the surface of the probe was 
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aligned to be flush with the surface of the flat plate so as to avoid any local 
disturbances to the flow. The three port locations that had been used for the dye 
injection in the flow-visualization experiments were also used to  position the sensor 
element of the hot-film heat-transfer probes a t  the flat-plate surface. 

The relation between heat transfer and shear stress for these probes was established 
empirically. In  order to facilitate simple and accurate calibration, it is useful to find 
an appropriate non-dimensional form for representing these data. 

For the case ofa  thermal probe embedded in an otherwise-adiabatic wall subjected 
to a steady laminar flow that possesses a velocity profile that  can be considered linear 
ovcr a distance from the wall larger than the thermal boundary-layer thickness above 
thc probe, the functional relationship between heat transfer and surface shear stress 
can be expressed (L6vhque 1928) as 

Nu = 0.807Ni.  (28) 

Here 

where Q is the local heat-transfer rate per unit area, L is the length of the hot-film 
element in the flow direction, k is the fluid thermal conductivity, T, is the local wall 
temperature, T, is the freestream fluid temperature, cP and v are respectively the 
specific heat and kinematic viscosity of the fluid, and (aulaz), denotes the local 
velocity gradient at the wall. 

The average heat-transfer rate Q per unit area may be equated to  the electrical 
dissipation in the probe divided by the size of the probe: 

- v 2  1 
Q=-----, 

R WL 
where V is the voltage across the thin film, R is the film resistance and W is the 
dimension of the film normal to the direction of the flow. 

Incorporating (28)-(30) and including the expression for the wall shear stress 
7, = p(au/az),, an expression is obtained relating the voltage drop V across the thin 
film directly to the wall shear stress 7, : 

vz = A&, (31) 
wherc A is a constant for any particular fluid, sensor geometry and probe resistance. 

The last expression assumes that the only form of heat exchange taking place is 
from the sensor element directly to the fluid. As the wall in which the sensor element 
is embedded is not adiabatic, conduction into the substrate is an important 
contribution to the probe heat loss. A suitable calibration relation has been found 
to be of the form 

where the second term B represents conduction into the substrate. The values A and 
B represent experimental calibration constants that  must be determined for each 
probe under conditions that approximate those of any proposed measurements. 
Consequently the hot-film heat-transfer probe was calibrated in position in the flat 
plate of the cone-and-plate device. The calibration was performed in conditions of 
primary flow, namely laminar flow with a linear velocity profile between the cone 
and the plate, for which 7, = ,uuw/a. A plot of V2 as a function of rh gave a straight 
line with positive slope and intercept. It is possible to  apply the same calibration 
relation (32) to conditions with secondary flow. I n  this case the total shear stress 7, 

V 2  = A&+B, (32) 
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on the plate is the vector sum of two components which are designated as rro in the 
azimuthal direction and rOr in the radial direction. The direction of 7, is the same 
as that of the surface streamline; consequently the azimuthal shear stress may be 

(33) 
computed from 

rrO = r, C O S ~ ,  

where 4 corresponds to the angle between the azimuthal direction and the dye 
streakline as measured during the flow-visualization experiments. Prior to each 
shear-stress measurement, the hot-film-probe sensor element was rotated to an angle 
that maximized the probe output voltage, indicating that the sensor element was 
indeed aligned perpendicular to the direction of flow. For local values of less than 
1, this angle approximated that given by the theoretical relation 

9 = tan-l [ - 0 . S B + 0 ( 8 3 ) ] .  (25) 
The probe output was not particularly sensitive to angle, being nearly at the 
maximum output over a 5' band. Shear-stress measurements were made under a 
variety of operating conditions and are described in $4.2. 

3.3. Torque measurements 

In  this set of experiments, the torque required t o  rotate the cone above the flat plate 
was measured using a Brookfield cone-plate viscometer (Model LVT). This device 
incorporated an accurate torque indicator. A wide range of operating conditions was 
achieved with the use of two interchangeable cones (a = 1 . 5 7 O  and 3.00°), three 
fluids with differing kinematic viscosities v (methanol, 0.68 x lo-' cm2/s; water 
1.0 x cm2/s; and silicone oil, 20 x lop2 cm2/s), and varying cone rotational rates 
(0-300 r.p.m.). The cone radius Ro was 33 mm in all instances. Ro is defined to be 
the value of i? evaluated using the cone radius R,. The possibility of varying the cone 
rotational rate as well as the cone angle and fluid kinematic viscosity gave a wide 
range of operating conditions in terms of the wo values attained. It was possible 
moreover to obtain measurements a t  identical values of go using different com- 
binations of the contributing physical variables Y, a and w .  

The torque T required to rotate the cone above the flat plate is simply the integral 
of the azimuthal component of the shear stress across the entire cone surface, from 
r = 0 to r = R,: Ro 

T = j' rro 2xr2 dr, (34) 
0 

where rro is the local shear stress a t  each point on the cone surface. A dimensionless 
shear stress may be defined as 

where the shear stress in primary flow rp 3 pula is used to non-dimensionalize the 
shear stress. The definition of the term g(B) is predicated on the assumption that the 
local shear stress on the cone a t  any radius is only a function of the single parameter 
B. This is a prediction of the theory (27) €or small values of 8; i t  remains a postulate 
for large values of 3, including turbulent flow. For g ( B ) + O ,  r,*e = 1 and the flow is 
purely primary. Substituting (35) into (34), the torque may be expressed in terms 
of the function g(8)  : 

T = J: 5 (1 + g(@) 2nr2 dr. (36) 

Using (36) it is possible to express the function g ( 8 )  in terms of R and experimentally 
determined torque measurements ; this is described below. 
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The definition of a was established in $2  as 

- r2wa2 Rr- 
12v 

Thus, for a fixed geometry, rotational rate and fluid, the radius r may be expressed 
as 

Using (37) and (38), the torque (36) may be expressed as 

where 

If (39) is integrated under conditions where no secondary flow exists (i.e. in the 
limit of g ( R ) + O )  the result is 

This result can be used to normalize the expression for the torque given by (39) : 

A new parameter p is now defined such that 

By differentiating (42) an expression relating g(R) and results 

This expression provides a means whereby the function g(a )  can be measured 
experimentally. Measurements of the torque T can be used to determine p(&) using 
the values of T ,  Tp and R", as they appear in (42). Differentiation of the experimental 
relation T(R0)  allows computation of g(Ro) using (43). It is not always accurate to  
differentiate an experimentally determined function, particularly if there is much 
scatter in the data. There was, however, very little scatter in the torque measurements, 
as may be seen from the normalized torque values plotted in figure 9. 

The method adopted here to  determine g(R)  experimentally rests upon a number 
of assumptions.First it is implicit that  there is only a single correlating parameter 
R that  determines the degree of departure from primary flow. Although this is 
predicted by laminar theory, the success of this correlation in turbulent flow is a 
conjecture until tested experimentally. A second important assumption is that end 
effects do not alter the determination of g(R) according to (43). I n  that context it 
is the change of the total torque p with Ro that is the determining factor. Errors from 
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this source would be minimized by small cone angles, as it would be expected that 
the influence of the end effects would cxtend into the interior flow between the cone 
and plate only one or two times the gap height at the cone edge. Further consideration 
will be given to this question in discussing the experimental results. 

4. Results and discussion 
4.1. Flow visualization 

The two forces acting on the fluid in the cone-and-plate device are the centrifugal 
force, caused by the circular motion of the fluid, and the viscous force, arising from 
the relative motion between the cone and the plate. It is the relative magnitude of 
these two forces that govern the motion and this is reflected in the parameter 8. As 
8-t 0 the centrifugal force becomes negligible and the fluid streamlines, as marked 
by the dye streaklines, are concentric circles about the cone apex. This type of 
motion has been termed primary flow. As the value of 8 increases, so does the 
centrifugal force ; dye streaklines a t  the stationary plate surface are oriented towards 
the centre of the plate; this non-circular motion is termed secondaryflow. An example 
of a dye streakline indicating the presence of secondary flow is given in figure 3. 

In  order to quantify the motion of the streamlines with changing values of 8, the 
angle # made by the tangent to the dye streakline a t  the point of injection and the 
azimuthal direction (figure 4) was plotted as a function of 8. The results for a 1' cone 
angle are shown in figure 5 .  The theoretical solution for small a, 

43 = tan-' [ - 0 . S B + 0 ( 8 3 ) ] ,  (25)  

is indicated by the solid line in this figure. For values of 8 6 0.5 there is very good 
agreement between the theoretical solution and the experimental results. Similar 
results were obtained using cone angles of 3' and 5 O .  There was, however, some 
additional scatter for data recorded a t  the larger cone angles. The method whereby 
the dye was entrained into the gap along the flat-plate surface by the motion of the 
fluid was least successful in the case of large cone angles, and the additional scatter 
was attributed to this fact. 

For 8 > 4 the transition to turbulent flow was observed by the breakup of the dye 
streakline, and an example is given in figure 6. For any given rotational rate, cone 
angle and fluid viscosity, the value of 8 increases with increasing radial position from 
the centre of the flat plate outwards. Thus the first signs of transition to turbulent 
flow appear a t  the outer radius of the plate. The turbulence then propagates inwards 
towards the centre of the plate as the value of 8 a t  a fixed radius increases with 
increasing cone rotational rates. Four photographs, taken during the aluminium- 
particle flow-visualization experiment, are presented in figure 7 and show the progress 
of the turbulent front towards the centre of the plate with increasing values of 8,. It 
is interesting to  note that any fluid particle near the flat-plate surface will eventually 
be carried inwards toward the centre of the plate and then outwards along the surface 
of the cone because of the action of the secondary flow. When 8, $- 1 and turbulence 
is present a fluid particle near the outer edge of the plate surface will travel from a 
region of turbulence into a region of relaminarized flow. The radius of the sharp visual 
front revealed by the aluminium flakes a t  the turbulent-to-laminar transition was 
used to calculate values of Rtransitlon for different flow conditions with 8, a t  the outer 
radius of the plate in the range of 4 2 8, >, 40. A mean value of = 4.0 f 0.4 
was found. The turbulence, as made visible by the suspended aluminium flakes in 
figure 7, bears a striking resemblance to the analogous visualization of a turbulent 
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FIQURE 3. Photograph of a dye streakline near the plate surface in secondary flow, R = 0.8. 
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( b )  
FIGURE 4. ( a )  Azimuthal (v) and radial (u)  components of velocity near the plate surface, showing 
the angle 4. ( b )  Schematic representation of a surface streamline. The angle is formed between the 
azimuthal and the surface directions. 

boundary layer reported by Cantwell (198l), although Cantwell's pictures exhibit 
more orientation of the structure in the streamwise direction than do the pictures 
included here. 

4.2. Shear-stress measurements 

The experimentally determined azimuthal shear-stress values r,.@ are compared with 
the numerical calculations of Fewell & Hellums (1977)t and the laminar theory for 
f? 4 1, as presented in 92, in figure 8. The azimuthal shear stress has been normalized 
with the primary-flow shear stress rp  = ,uw/a. As the calculations of Fewell & Hellums 
were performed for different cone-edge conditions than those of the current experi- 
mental work, their results have only been plotted for values of corresponding to 
radial locations within $Ro, which was the outermost radius of our experimental 

t The local values of T,* from Fewell & Hellums on the cone and plate surfaces were obtained 
by taking the slopes of their theoretical velocity profiles at the surfaces of the cone and plate a t  
different radii from the cone axis and computing the corresponding local values of from their 
two parameters which are equivalent to &/az and a. 
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0.001 0.0 1 0.1 1 10 

FIGURE 5. Plate-surface dye-streakline direction 9 as a function of for a 1' cone. 

measurements. For a 5 0.5 there is good agreement between the experimental data, 
the numerical calculations of Fewell & Hellums and our laminar theory based on an 
expansion of the equations of motion for small 8. Shear-stress measurements were 
obtained for the surface of the cone from a series of torque measurements as described 
in the following section. These data have also been plotted (solid line) in figure 8 and 
are found to be in excellent agreement with the laminar theory and the numerical 
calculations of Fewell & Hellums for a < 0.5. 

4.3. Torque measurements 

Torque data obtained from the Brookfield cone-plate viscomcter and normalized with 
respect to the torque (40) in primary flow have been plotted as a function of 8, in 
figure 9. The empirical curve 

(44) 4 
- = 1 + 1.290- 
T 
T P  3.5 + R, 

has been fitted to these data and is indicated by the broken line in this figure. The 
torque data obtained by Cheng (1968) for lo, 2' and 4O cones have been replotted 
in terms of the single parameter 8, in figure 10. For 8, 2 1 there is good agreement 
between these data and the empirical expression (44) for the normalized torque which 
is plotted as a solid line in the figure. The numerical calculations of total cone torque 
by Fewell & Hellums (1977) are compared with the normalized torque expression (44) 
in figure 11.  I n  this case the calculations of Pewell & Hellums show a smaller increase 
in torque than is reported in this paper. Their calculations agree more closely with 
Cheng's data. In  each instance, both the theory and the experiments appear to be 
adequately represented by the single parameter 8. 

Substituting (44) and (42) into (43), the following expression is obtained for 

Thus the normalized shear stress on the surface of the cone may be expressed, using 
(35), as 

The result is plotted in figure 8 and labelled 1 +g(8 ) .  It is important to  note that 
the shear-stress component rr0 on the cone surface is always greater than the value 
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FIGURE 6. Photograph of dye streakline near plate surface in turbulent flow, = 16.9. 
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FIQURE 7. Four photographs taken during aluminium-particle flow-visualization experiment 
showing progress of turbulent front with increasing values of a,, and the cone rotating 
counterclockwise. 

for primary flow; conversely the plate shear-stress component T , . ~  is less t h a n t h e  
primary-flow value prior to the onset of turbulence.? 

4.4. Velocity profiles 

The laminar theory presented in $ 2  predicts that  there will be an increasing distortion 
of the azimuthal velocity profile with increasing values of 8. No direct measurements 
of the azimuthal velocity profile were made during the present investigation ; 
however, i t  was possible to compare the predictions of laminar theory with the 
numerical calculations of Fewell & Hellums (1977). 

For the present theory, the azimuthal velocity is expressed for small a as 

2, = w r ( v ” , + m 2 +  ...), 

t Note that the total shear stress, as experienced by a test specimen on the plate, for example, 
is ~,~/cosq5, where q5 is the angle of the total shear-stress vector with respect to the azimuthal 
direction. 
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surfaces. Comparison between the laminar theory, the numerical solutions of Fewell & Hellums 
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.. 
0 -0.06 -0.12 -0.18 

Azimuthal perturbation velocity, k2C2 
FIGURE 12. Comparison between the normalized second-order azimuthal-velocity correction term 
and correction t o  a linear velocity profile (primary flow) as computed by Fewell & HeIIums (1977). 

this case the numerical calculations were performed at 73 yo of the cone outer radius, 
where end effects should not be important. Agreement is fair for the two pairs of curves 
a t  R = 0.56 and a = 0.69. The maximum values of the distortion in these two cases 
agree to  about 15 "/A, and the slopes (shear-stress increments) a t  the cone and plate 
are even more accurately predicted (to within about 10 %). As a approaches unity, 
however, the present analytic method based on an expansion for small w fails to  be 
quantitatively accurate. 

The shear-stress component rr8 on the cone is computed from the gradient of the 
azimuthal velocity. It is evident from the data presented in figure 12 that  the shear 
stress on the cone is larger than that on the plate a t  any interior radius away from 
the cone edge. The velocity perturbation R2G2 is negative everywhere in the fluid 
space ; therefore the velocity gradient and surface shear stfress is less than primary 
flow a t  the plate and more than primary flow a t  the cone. 

5.  Conclusions 
An analytic description of the flow in a cone-and-plate geometry has been 

developed by performing an asymptotic expansion of the Navier-Stokes equations. 
The single parameter of the expansion is 2 = r2wa/12v .  The analytic flow description 
appears to be accurate for small cone angles, for the portion of the flow field that 
is away from the periphery of the cone, and for values of less than about 0.5. The 
fluid shear stress, the angle of the plate-surface streamlines, and the onset of 



398 H .  1’. Sdougos, S.  R. Bussolari and C .  F .  Dewey 

turbulence as observed using flow-visualization continue to be describable as 
func.tions of the singlc variable R“ with increasing values of 8. The fact that this entire 
range of flow phenomena may be described by a single parameter allows a very 
succinct and compact description of the fluid motion in this device. 

The present results do not attempt to describe the flow near the outer rim of the 
cone, where edge effects and the precise boundary conditions are very important. 
Fewell & Hellums (1977) calculated the behaviour of the flow in this region for the 
case of a free-surface termination to  the fluid. There are changes in the shear stresses 
on the cone and plate near their outer edges that serve to equalize the torques on 
the cone and plate. In contrast to  the procedure of Turian (1972), Fewell & Hellums 
did not require any assumptions to achieve the required torque balance. Within the 
interior of the fluid space, the azimuthal shear stress rrO depends only on the single 
parameter 8. In  primary flow, i.e. for 8+0,  rrO is the same on the cone and the plate 
a t  any given radius. As fi increases, rrO departs from its primary value; the cone shear 
stress becomes more than, and the plate shear stress becomes less than, the primary 
value The quantitative predictions of the laminar theory are in good agreement with 
the present shear-stress measurements for a 5 0.5.  

It was not possible to measure the fluid shear stress on the cone directly. Rather, 
the torque required to rotate the cone was measured and the resulting data were 
differentiated to obtain the shear stress on the cone surface. This method is not 
without difficulty. A major assumption is that the shear stress throughout the device 
may be characterized by the single parameter 8. This assumption, however, fails near 
the outer edge of the device where the end conditions are important. The accuracy 
of the measured shear stress is not compromised unless the derivative of the torque 
is affected. The results that are reported in figure 8 suggest that the procedure is in 
quantitative agreement not only with the present theory and that of Fewell & 
Hellums (1977)t but also with the data of Cheng (1968). 

Turbulence appears within the fluid space for all radii associated with a local value 
of R greater than 4. The fact that  a single value of the parameter B correlates the 
onset of turbulence for a variety of cone angles, radii, viscosities and rotational 
velocities suggests that  thc turbulence is triggered by an instability associated with 
the distorted velocity profile produced by the secondary flow. To date there have been 
no detailed measurements of the velocity-fluctuation spectrum in the turbulent 
region ; photographs taken of suspended aluminium flakes, however, suggest that the 
turbulence does not contain any prominent discrete frequencies. The disturbance 
patterns in the aluminium flakes had structures that were extended in the flow 
direction in a manner similar to that observed by Cantwell (1981) at the base of a 
turbulent boundary layer. 

One of the interesting features of this geometry is the relaminarization of the flow 
near the plate surface. The secondary motion sustained by centrifugal force circulates 
fluid outward near the cone surface and inward near the plate surface. Streamlines 
are deviated inward from the azimuthal direction by approximately 4 5 O  a t  the plate 
surface for values of w exceeding unity. Fluid near the cone will therefore travel from 
the inner part of the device, where c 1, into a region where a > 4 and the flow 
is turbulent. Conversely, fluid near the plate will move from a region of turbulence 
to a region where the flow is essentially laminar. This ‘relaminarization’ is an 
intriguing phenomenon and deserves further study. There are only a few instances 
in which relaminarization has been observed (see e.g. Coles & Van Atta 1967; 

t The points on figure 8 from Pewell & Hellums are obtained from the slopes of the velocity 
profiles that  they computed and represent radial positions away from the outer edge of the cone 
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Narasimha & Sreenivasan 1973 ; Wygnanski & Champaigne 1973 ; Wygnanski, 
Sokolov & Friedman 1975). It is evident in figure 7 that the turbulent front is very 
sharp and that the fluid goes from gross manifestations of turbulence to  essentially 
laminar flow in a distance in the flow direction of a few gap heights. 

The cone-and-plate flow was investigated for the purpose of assessing the influence 
of fluid shear stress on living biological samples. One attractive feature of the 
cone-and-plane geometry is the possibility of producing both laminar and turbulent 
flow with the same time-mean shear stress in a single device. Using (33), (35) may 
be rewritten for the plate surface as 

pw 1 + k ( R )  
7,Q = -~ 

a cosq5 ’ 

Rcos+ - przwza 
l+lc(R) 127,Q . 

or, dividing both sides by 8, _-- 
(47) 

The term k ( a )  measures the decrease of the plate shear-stress component 7,* below 
the value for primary flow, and is defined as the departure from unity of rrs/(,uw/a) 
on the plate, as illustrated in figure 8. 

The angle q5 is a smoothly varying function of r as defined by figure 5. The left-hand 
side of (48) is therefore a smoothly varying single-valued function of R whose value 
is strictly equal to a t  small values of a and something slightly less than a for larger 
values of a. With the value of 7,Q fixed, the value of a can be changed from 0.5 
(associated with laminar flow) to 4 (indicative of turbulent flow) by increasing the 
radius of the observation point by 4 2 ,  increasing the rotational rate by the same 
factor, doubling the cone angle, and adjusting the fluid viscosity slightly to 
compensate for the variation of the terms k(&) and q5. Thus a variety of shear-stress 
levels can be created with alternative conditions producing either laminar or 
turbulent flow. This property may prove useful for other fluid-dynamical investigations 
as well. 

This research was supported by the Whitaker Health Services Fund and the 
National Heart, Lung and Blood Institute (HL 25536, HL 21859). 

Appendix. Asymptotic expansion of the equations of motion for 
cone-and-plate flow 

repeated below : 
The simplified Navier-Stokes equations (8)-( 11) for cone-and-plate flow are 

(A 1 )  
v2 1 ap a Z u  

r-momentum - - = - -- +v-, 
r p a r  az2 

au aw 
continuity - + - + - = 0 

ar r az 
The boundary conditions of no slip a t  the cone or plate surface can be expressed as 
follows (for a $ 1): 

(A 5) 
u = v = w = o  ( z = O ) ,  

u= w = O ,  v = r w  ( z =  ra) .  
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Before solving the equations of motion, the following transformation of variables 
is performed : 

(A 6) 
- 2 1  - w  - 2  
'u=- u=-, w=- z = -  , ? = r .  

wr ' wr awr ' ra 

The three velocity components C, v", G are assumed to be of the following form: 

.ii = (iio+a.ii,+a2.ii2+ ...), 

v" = (50++v"l+R262+...), (A 8) 

G = (G0+RGl+R2G2+ ...), 

(A 7 )  

(A 9) 

where the expansion parameter a is defined as 

- r2wa2 R G -  
12v 

and Go, GI, . . . , g o ,  ...,Go, . . ., are normalized components of velocity. 

be rewritten as 
Using these transformed variables, the Navier-Stokes equations (A 1 )-(A 4) may 

a 2 i i  - ?a2ap 
- + 12RC2- -- = 0, r-momentum 
a 2  p aa 

a2G i ap 
a 2  pwaz z-momentum ~ - -- - - 0, 

a.ii ,a.ii a$ 
aa az a2 

continuity r"- -2- +.ii+ - = 0. 

The transformed boundary conditions a t  the cone and plate surface are 

( Z =  1 ) .  

1 
- -  Go = u1 = u2 = ... = 0, 

wo = vul = w 2  = ... = 0, 

Go = Gl = c2 = ... = 0 

Go =C1 = G, = ... = 0, 

Go = G1 = lz2 = ... = 0, 

G o =  1, 

GI =I& = ... = 0 

- I -  

( 2  = 0); 

I 
(A 15a) 

(A 15b) 

The transformed Navier-Stokes equations may now be solved by the method of 
asymptotic expansion. The normalized velocity components (A 7)-(A 9) are sub- 
stituted into (A 11)-(A 14). The terms in each of the resulting equations are then 
grouped according to their order of magnitude : 

+a3[. . . ]+. . .  = 0, (A 16) 
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az 1 afi, afi 
az az -12G1-+12ZG02 +122tZ12 + R 3 [ [ . . . ] + . . .  = 0, (A 17)  

z-momentum [z - pL - - $1 + R [ s ]  +&!2p$] +R3[. . . ]  = 0, (A 18) 

az 1 +6ii2+ 2 + R 3 [ [ . . . ] + . . .  = 0. (A 19) 

Each grouping on the left-hand side of each of (A 16)-(A 19) may be set equal to zero, 
allowing solutions to be obtained for each of the velocity components. These solutions 
are now presented. 

Zeroth-order solutions : O( Ro) 
From (A 16)-(A 19) the following zeroth-order equations are formed : 

azi i ,  

a% 
-- - 0, 

a2fio 
- = 0, 
a 2  

a w ,  1 ap 

- a 3 0  a i i  ac, 
aa aZ az r -  -z"+ +2ii,+ - = 0. 

The solutions to (A 20)-(A 23) for the boundary conditions (A 15) are 

6, = 0, 6, = z", 6, = 0. 

It should be noted that using Go = 0 and (A 22) results in 

and hence 
P = p(r ) .  

Equation (A 24) and (A 25) describe conditions of primary $ow. 
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First-order solution: O(B1) 
From (A 16)-(A 19) the following first-order equations are formed after substitution 

Integrating (A 26) twice and applying the no-slip boundary condition (A 15) gives 

a, = gYi?-2"4+c2", 
where 

12 dp Iy=--- 
pdr "  dr" ' 

and C is a constant of integration which may be evaluated from the continuity 
equation by noting that the net radial flow integrated across the gap height is zero : 

2-1 
ii, d2" = 0. Lo 

The boundary and continuity conditions together give Y = 3.6 and C = -0.8. Thus 
the first-order radial velocity (A 30) may finally be written 

GI = 1.8P-Z4-O.82". (A 31) 

This non-dimensional radial velocity profile is of order unity and has been plotted 
in figure 2. The choice of the factor of 12 in the definition (A 10) of a enables the 
ratio of the secondary to primary flows to be expressed as 

Gl = &1.82"--P-0.8). 
UO 

As the bracketed expression in (A 32) is of order unity, a is a true measure of the 
degree of secondary flow. 

From (A 27) and boundary conditions (A 15) the normalized first-order azimuthal 
component of velocity Gl is found to be identically equal to  zero. 

The first-order vertical velocity component G1 may be obtained by substituting 
the expression (A 31) for Cl into the first-order continuity equation (A 29). After 
simplification, (A 29) becomes 

Integrating (A 33) with the boundary condition (A 15) gives the following expression 
for Gl:  

(A 34) Gl = 1 . 2 ( 2 - 2 ) .  
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Second-order solution: O(&) 

From (A 16)-(A 19), after substitution of the zeroth-order velocity components 
(A 24), and noting that the first-order azimuthal velocity component d1 is equal to 
zero, the following second-order equations are formed : 

From (A 35), (A 37) and the boundary conditions (A 15) the two terms 4, and 6, are 
found to  be identically equal to zero. 

After substituting the first-order components 4,, (A 31), and G1, (A 34), into 
(A 36) and simplifying, the following result is obtained : 

a2c2 
__ = 12( 0.42 + 0.62 - Z5). 
a 2  (A 39) 

Integrating this expression twice and using the boundary conditions (A 151, the 
following expression is obtained for d, : 

d, = &( - 83Z+ 70Z4 + 639 - 5053. (A 40) 
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