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The flow between a shallow rotating cone and a stationary plate has been investigated
using flow visualization, hot-film heat-transfer probes, and measurements of the
torque required to rotate the cone against the retardation of the viscous fluid that
fills the device. Theory appropriate to these experiments is also presented.

An expansion of the Navier—Stokes equations is performed for small values of the
single parameter R = r2wa?/12v. (Here r is the local radius, w the angular velocity
of the cone, a{ < 1) is the angle between the cone and plate, and v is the fluid kine-
matic viscosity.) The measurements at low rotational speeds describe a simple linear
velocity profile as predicted for the laminar flow of a Newtonian fluid. At larger
rotational speeds, strong secondary flows are observed. There is agreement between
the laminar theory and the measured streamline angles and shear stresses for values
of B < 0.5. Turbulence is observed for B = 4.

1. Introduction

This paper describes the secondary flow and turbulence in the fluid between a
rotating cone and a stationary flat plate. This low has been of substantial interest
in the past primarily because it is a geometry used frequently in commercial
viscometers. The motivation of the present research, however, was to develop an
apparatus with a well-characterized flow in which damage to living eells by fluid shear
stress could be investigated (Dewey et al. 1981).

This Introduction provides a physical description of the various forces acting on
the fluid and an explicit statement of the flow pattern in the limit of very small cone
angle and slow rotation. A single flow parameter that characterizes the flow is defined
and a summary of other relevant investigations is also presented. The asymptotic
expansion method used to obtain a theoretical description of laminar secondary flow
in the device is described in §2. The experimental apparatus is described in §3, and
results are presented and discussed in §4.

1.1. Introductory description of the flow

Cone-and-plate viscometers are conventionally operated under conditions where
negligible secondary flow exists. In this case, flow streamlines are coneentric circles.
Both the gap width h(r) and the azimuthal cone surface velocity vy(r) increase
linearly with radius, so that the shear rate

W _ v
@ h
is identical at every point within the fluid as well as on the cone and plate surfaces.

The operating requirements for testing living cells (Bussolari, Dewey & Gimbrone,
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FIGURE 1. Geometry of the cone-and-plate apparatus defining the nomenclature used.

1982) vary considerably from those that apply to normal viscometers. In particular,
a desirable attribute would be the ability to produce both laminar and turbulent flow
in a single device while having the same time-average shear stress at the surface of
the plate. It is demonstrated in §5 that this is possible.

The variables governing the flow are summarized in figure 1. In the limit of low
rotational speed and small cone angle, the streamlines are concentric circles and, with
a Newtonian fluid, the surface shear stress is

wr
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where p is the viscosity of the fluid and z is the coordinate normal to the plate. With
a sufficiently small cone angle, tana may be replaced by a, and the shear stress

can be expressed as
T =pw/a, (2)

where w is the angular velocity of the cone. The surface shear stress is thus constant.
This situation is termed primary flow.

As the angle a and rotational rate w increase, the fluid near the cone experiences
an increasing centrifugal force that promotes radial fluid motion towards the
periphery of the device. The relative magnitudes of centrifugal and viscous forces are
measured by a parameter termed R. This parameter represents the ratio of the
characteristic centrifugal force to the characteristic viscous force acting on the fluid
at any radius from the centre of the cone. The characteristic centrifugal force per unit

fluid volume can be expressed as
2
P pre?, (3)

where p is the fluid density. The corresponding viscous force is 7/h, or uv,/h?. The
ratio of these two terms is

centrifugal force  r’wa?

: (4)

viscous force v
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where v is the fluid kinematic viscosity z/p. In the Appendix it is demonstrated that
an ordering of all variables such that the non-dimensional equations contain terms
of order unity leads to a factor of 12 in the denominator of the parameter R.
Henceforth the single parameter used to describe the flow is

riwa?

B="To )

and thus the significant physical variables for cone—plate flow are p, g, a, 7, w.

1.2. Previous descriptions of cone-and-plate flow

Ashasalready been noted, by far the most. common use for the rotating cone-and-plate
configuration has been in viscometry. This device was first introduced by Mooney
& Ewart (1934), and provides viscosity data for fluids with various stress—strain
relations. The advantage of the cone-and-plate configuration over other viscometers
is that shear stress and shear rate are constant throughout the fluid sample provided
that the gap angle a (and hence F) is kept sufficiently small. Typical commercial
devices employ a cone angle of 0.3° and a radius of approximately 2-3 cm. Most
previous theoretical treatments of the cone-and-plate configuration describe flows
dominated by primary flow (Walters 1975; Coleman, Markovitz & Noll 1966; Walters
& Waters 1966).

Secondary-flow phenomena in a cone-and-plate device were apparently first
observed by Cox (1962) using dye-visualization techniques. Several analyses and
experiments appeared contemporaneously with the observations of Cox: the exper-
iment and analysis of Miller & Hoppmann (1963), where large cone angles were used ;
the analysis of Slattery (1961), which clearly described the conditions under which
secondary flow could be neglected ; and the experiment and detailed theory of Pelech
& Shapiro (1964), which treated the related problem of flow between a spinning
flexible disk and a stationary flat plate.

Pelech & Shapiro were the first to clearly identify the parameter governing
secondary fluid motion in this type of flow geometry as being the ratio of the fluid
centrifugal forces to viscous forces. They derived a parameter for their spinning-
flexible-disk problem that is equivalent to the parameter R used here. Walters &
Waters (1966) used the dimensionless parameter L = wb?/v in their analysis, where
w is a typical angular velocity and b is a typical length such as the cone outer radius.
The parameter L is equivalent to R, except that the term a? is omitted and the length
parameter b is typical of the device as a whole and does not refer to the local radius
of the point under investigation. Thus L does not refer to the local ratio of viscous
to centrifugal forces at any position within the apparatus.

Walters & Waters expanded the equations of motion for small values of the
parameter L and solved the resulting equations numerically. Two years later, Cheng
(1968) published the first systematic data describing secondary flow. He measured
the torque produced in a cone-and-plate viscometer and compared his results with
the predictions of Walters & Waters, finding good agreement. The comparison
required two independent quantities, the parameter L and the cone angle a. An
attempt by King & Waters (1970) to extend this analysis to terms of higher order
in the parameter L produced only marginal improvement in the agreement with
experimental data in the range where strong secondary flow occurred.

Savins & Metzner (1970) developed a solution for the secondary flow in a
cone-and-plate device by using the primary flow to establish the pressure field; a
subsequent calculation yielded the radial component of velocity. Several of the
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present results, obtained by systematic expansion of the governing equations in terms
of the parameter B, are identical with those found by Savins & Metzner (1970).

Turian (1972) used a two-parameter expansion method to compute secondary flow.
His parameters were, in the present nomenclature, equivalent to L and «. He
expanded the governing equations in terms of a and La® with the assumption that
the shear stress on the cone and plate must be identical at each radial position within
the device. The present analysis shows that this is incorrect. Heuser & Krause (1979)
arrived at results similar to those of Turian, and extended the asymptotic equations
to encompass the region near the edge of the cone. They represent the outer boundary
by a liquid free surface. Only a perturbation solution to this outer flow is attempted.

The most complete theoretical study of this geometry to date was completed by
Fewell & Hellums (1977). Secondary flow was computed using finite-difference
numerical techniques. Again, two parameters equivalent to L and a were used. One
advantage of the finite-difference solutions (and this also holds for the earlier
numerical results of Walters & Waters 1966) is that the details of the flow are specified
everywhere within the cone—plate space. In contrast with the solutions of Savins &
Metzner, Turian, Pelech & Shapiro and the present calculations, Fewell & Hellums
obtain results that can be used to predict the extent to which the flow is modified
by the boundary conditions at the outer edge of the cone.

2. Theoretical description of flow in a cone-and-plate device

This section presents a solution of the equation of motion for the flow of a
Newtonian liquid between a shallow rotating cone and a flat plate where the angle
o (figure 1) is typically of the order of 0.08 rad (5°) or less. For such small angles,
the ratio of the velocity w normal to the plate to the radial velocity « will be of order
o w

—~a gl (6)
u

Similarly the velocity gradients normal to the plate (the z-direction) are always large
compared with those in the radial (r} direction. Furthermore, the flow is taken to be
rotationally symmetric about the cone axis so that all #-direction gradients are

identically zero. Thus 0 9
o <o 36~

With these simplifications, the Navier~Stokes equations in cylindrical coordinates
reduce to the following form:

w < (u,v), 0. (7)

momentu 02— lap Ou
r-mome m o= o or Vaz2’

v v %

(8)

f-momentum ws +w6; =Voa 9)
10 0?2
z-momentum 0= — ;a—{: + Va—;:;, (10)
. ou wu  Qw
continuity 3 + P + PPl 0. (11)

The coordinate directions (r, 8, z) and corresponding velocities (u, v, w) are defined in
figure 1. The fluid density is p and the kinematic viscosity is v. An additional

approximation basedona <€ lis (12)



Secondary flow and turbulence in a cone-and-plate device 383

1.0
—0.8 —
406
—0.4 u I )
w—mgr =1.822-24-0.87
- Jo0.2
L 1 1 ]
-0.10 -0.05 0 0.05 0.10
i

Fiaure 2. Normalized secondary-flow velocity profile 4, (2). This is the
first-order term of the radial velocity component (17).

The reduction of the Navier—Stokes equations through order-of-magnitude estim-
ates follows directly from the analogous case of two nearly parallel spinning disks
(Pelech & Shapiro 1964). The resulting equations have the character of a lubrication
problem and, consistent with that analogy, it may be demonstrated, using (8)—(11),
that op op

% < 3 i.e. p=p(r)only. (13)
The boundary conditions associated with this geometry are that the fluid is in
intimate contact with the rotating cone and the stationary plate. The approximations
inherent in our analysis neglect edge effects at the outer rim of the cone. Clearly, this
approximation will fail within several gap heights of the cone edge, but predictions
of the fluid behaviour in the interior of the device should not be affected.

Solution of (8)—(11) has been obtained by the method of asymptotic expansion and
is presented in the Appendix. The small parameter used in this expansion is

~  rwal?

R= 5 (14)
This parameter is a measure of the ratio of the centrifugal to viscous forces acting
on the moving fluid. The fluid adjacent to the rotating cone experiences a centrifugal
force which causes a flow in the radial direction. There is a corresponding radial flow
in the opposite direction in the fluid close to the stationary plate. The normalized
secondary-flow velocity profile is sketched in figure 2. When E->0 the centrifugal
forces become small and the radial flow velocity is zero everywhere. In this limit,
viscous forces dominate and (9) becomes

% . wz
2= 0 le v(r,z)—;. (15)
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The viscous wall shear stress 7,, is then uniform over the whole plate surface:

v Jw
Tw_"lu’azz=0— a . (16)
This result is termed primary flow. Fluid streamlines are concentric circles about the
cone apex. As R becomes larger, centrifugal forces become significant and secondary
Sflow develops.
For small values of & (8)~(11) may be expanded in ascending powers of £ by using
the following scheme:

u = wr{iy+ B, + B, + ...], (17)
v = wr[f,+ Bo, + B2, + ..., (18)
w = wrafib,+ Biv, + B2, + ..., (19)

where the non-dimensionalized velocities are designated by a tilde. All non-
dimensionalized velocities are of order unity, and it is shown in the Appendix that
the terms 4, i, ¥,, %, and @, are identically zero. The faetor a appearing in front of
the brackets in (19) is a consequence of the fact that the ratio of w to « is of order
a (see (6)).

The solution, the details of which are presented in the Appendix, has been carried
out to second-order terms in &. The following results are obtained:

7y =2, (20)
i, = 1.882—#—0.82, (21)
Wy = 1.2(2—P), (22)
By = 135(— 835+ 7021 + 6335 — 50%7). (23)

The parameter £ is the non-dimensional distance z/ar between the plate (£ = 0) and
the cone (£ = 1).

In the presence of secondary flow, the fluid streamlines are no longer concentric
circles and the local fluid velocity vector forms an angle ¢ with the azimuthal
direction (figure 4). This angle is defined by

tan ¢ = % (24)

At the plate surface (£ = 0) for small £
¢ = tan~![—0.8R+ O(L?)]. (25)

This prediction is compared with experimental results in §4.

The shear stresses 7,5 on the cone and the plate can also be expressed analytically
from the theory. By differentiating (23) with respect to distance normal to the plate
and evaluating the resulting expression at £ = 0 and Z = 1, the following relations for
7,9 are obtained:

plate 7, = ’ia“—’ (1—0.4743R2+...), (26)

cone T,y = %u_)“ +0.9257R2+ ...). (27)

The flow at any radius from the cone apex is considered to be a function of the local
value of B; hence there is no requirement that the shear stresses on the cone and plate
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at that location be equal. The two expressions (26) and (27) for azimuthal shear stress
on the cone and plate surfaces are compared with experimental measurements and
numerical solutions of the equations of motion in §4.

3. Experimental methods

The experiments reported in this paper were chosen to illustrate different aspects
of the secondary flow and turbulence that occur in the cone-and-plate geometry. For
the case of laminar secondary flow, the theory presented in §2 furnishes a number
of quantitative predictions that can be compared with measurements.

Three sets of experiments were performed. In the first of these, flow visualization
was used to describe the flow streamlines near the flat-plate surface and to investigate
the onset of secondary flow and turbulence. In the second set of experiments, hot-film
heat-transfer probes were used to measure the fluid shear stress at the plate surface.
Lastly, experiments were performed to measure the torque required to rotate the cone
above the flat plate.

3.1. Flow visualization

For the flow-visualization experiments, a Plexiglas cone-and-plate device was con-
structed. Three interchangeable cones of standard radii 10.8 cm were made. These
had cone angles of 1°, 3° and 5° machined to an accuracy of +0.1°. Both the cone
and flat-plate surfaces were highly polished. A range of cone rotational rates of
0-300 r.p.m. could be produced.

Two sets of flow-visualization experiments were performed. In the first of these,
dye streaklines were entrained into the flow near the flat-plate surface in order to
visualize the fluid streamlines under various flow conditions. The dye, a water-soluble
black ink, was injected by means of a syringe drive, at three individual ports located
at 1, 1 and £ of the plate radius. As the direction of the fluid velocity varies across
the cone—plate gap, care was taken to ensure that the dye was entrained by the flow
very near the plate surface. Once the syringe drive had brought the dye up to the
surface of the plate, the dye was carried along, near the plate surface, by the motion
of the fluid. Water and two water—glycerol solutions (489, and 729 by weight
glycerol) were used to vary the viscosity of the fluid between the cone and plate. The
ability to change the fluid viscosity, the cone angle and rotational rate, and the
dye-injection position provided a wide range of operating conditions.

In the second sect of flow-visualization experiments, a suspension of fine aluminium
flakes (Albron Powder no. 422, Alcoa) in methanol was used to monitor the
development of turbulence in the flow. The orientation of the flakes is dependent on
the local shear rate of the flow. Hence in turbulent flows a locally changing reflectivity
of the suspension is visible. All quantitative flow-visualization data were obtained
from photographs recorded with a 35 mm camera located below the flat plate and
looking directly up at it.

3.2. Shear-stress measuremenls

Hot-film heat-transfer probes were used to measure the fluid shear stress at the
surface of the flat plate. These probes (Model 1237W, Thermo-Systems Inc.) had a
sensor element which consisted of a small film of platinum (0.12 x 1.0 mm) coated with
a very thin layer of quartz for protection in liquid media. The sensor element and
its leads were potted in a stainless-steel tube with an outside diameter of 3.18 mm.
The quartz surface coating was polished smooth, and the surface of the probe was
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aligned to be flush with the surface of the flat plate so as to avoid any local
disturbances to the flow. The three port locations that had been used for the dye
injection in the flow-visualization experiments were also used to position the sensor
element of the hot-film heat-transfer probes at the flat-plate surface.

The relation between heat transfer and shear stress for these probes was established
empirically. In order to facilitate simple and accurate calibration, it is useful to find
an appropriate non-dimensional form for representing these data.

For the case of a thermal probe embedded in an otherwise-adiabatic wall subjected
to a steady laminar flow that possesses a velocity profile that can be considered linear
over a distance from the wall larger than the thermal boundary-layer thickness above
the probe, the functional relationship between heat transfer and surface shear stress
can be expressed (Lévéque 1928) as

Nu = 0.807N%,. (28)
Here
QL L2(au> Cplt
_-_— = —— Pr =-2C
Nu W —T.)’ N, = Pr o \az). 7 . (29)

where @ is the local heat-transfer rate per unit area, L is the length of the hot-film
element in the flow direction, & is the fluid thermal conductivity, 7}, is the local wall
temperature, T, is the freestream fluid temperature, c,, and v are respectively the
specific heat and kinematic viscosity of the fluid, and (0u/0z), denotes the local
velocity gradient at the wall.
The average heat-transfer rate  per unit area may be equated to the electrical
dissipation in the probe divided by the size of the probe:
= 1
Y= RwL
where V is the voltage across the thin film, R is the film resistance and W is the
dimension of the film normal to the direction of the flow.
Incorporating (28)—(30) and including the expression for the wall shear stress
Tw = u(0u/0z),, an expression is obtained relating the voltage drop V aeross the thin
film directly to the wall shear stress 7,:

(30)

2= A7}, (31)

where A4 is a constant for any particular fluid, sensor geometry and probe resistance.

The last expression assumes that the only form of heat exchange taking place is
from the sensor element directly to the fluid. As the wall in which the sensor element
is embedded is not adiabatic, conduction into the substrate is an important
contribution to the probe heat loss. A suitable calibration relation has been found

to be of the form Ve = A7 + B, (32)

where the second term B represents conduction into the substrate. The values 4 and
B represent experimental calibration constants that must be determined for each
probe under conditions that approximate those of any proposed measurements.
Consequently the hot-film heat-transfer probe was calibrated in position in the flat
plate of the cone-and-plate device. The calibration was performed in conditions of
primary flow, namely laminar flow with a linear velocity profile between the cone
and the plate, for which 7,, = pw/a. A plot of V2 as a function of 4, gave a straight
line with positive slope and intercept. It is possible to apply the same calibration
relation (32) to conditions with secondary flow. In this case the total shear stress 7,
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on the plate is the vector sum of two components which are designated as 7,4 in the
azimuthal direction and 7,, in the radial direction. The direction of 7, is the same
as that of the surface streamline; consequently the azimuthal shear stress may be
computed from

Trg = Ty COS ¢, (33)
where ¢ corresponds to the angle between the azimuthal direction and the dye
streakline as measured during the flow-visualization experiments. Prior to each
shear-stress measurement, the hot-film-probe sensor element was rotated to an angle
that maximized the probe output voltage, indicating that the sensor element was
indeed aligned perpendicular to the direction of flow. For local values of & less than
1, this angle approximated that given by the theoretical relation

¢ = tan"*[—0.8R + O(F*). (25)

The probe output was not particularly sensitive to angle, being nearly at the
maximum output over a 5° band. Shear-stress measurements were made under a
variety of operating conditions and are described in §4.2.

3.3. Torque measurements

In this set of experiments, the torque required to rotate the cone above the flat plate
was measured using a Brookfield cone-plate viscometer (Model LVT). This device
incorporated an accurate torque indicator. A wide range of operating conditions was
achieved with the use of two interchangeable cones (@ = 1.57° and 3.00°), three
fluids with differing kinematic viscosities v (methanol, 0.68 x 1072 cm?/s; water
1.0 x 1072 em?/s; and silicone oil, 20 x 1072 em?/s), and varying cone rotational rates
(0~300 r.p.m.). The cone radius R, was 33 mm in all instances. R, is detined to be
the value of R evaluated using the cone radius R,. The possibility of varying the cone
rotational rate as well as the cone angle and fluid kinematic viscosity gave a wide
range of operating conditions in terms of the B, values attained. It was possible
moreover to obtain measurements at identical values of R, using different com-
binations of the contributing physical variables v,  and w.

The torque 7 required to rotate the cone above the flat plate is simply the integral
of the azimuthal component of the shear stress across the entire cone surface, from
r=0tor=Ry: R,

T= j T 2mrtdr, (34)
0

where 7, is the local shear stress at each point on the cone surface. A dimensionless
shear stress may be defined as

Th = ”;’ja = L+g(B), (35)
where the shear stress in primary flow 7, = uw/a is used to non-dimensionalize the
shear stress. The definition of the term g(R&) is predicated on the assumption that the
local shear stress on the cone at any radius is only a function of the single parameter
R. This is a prediction of the theory (27) for small values of R; it remains a postulate
for large values of R, including turbulent flow. For g(R)—>0, 7% = 1 and the flow is
purely primary. Substituting (35) into (34), the torque may be expressed in terms
of the function g(&):

T = f MY 1+ (B 2m dr. (36)
0o X

Using (36) it is possible to express the function g(R) in terms of K and experimentally
determined torque measurements; this is described below.
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The definition of B was established in §2 as

~  rwo?
T2
Thus, for a fixed geometry, rotational rate and fluid, the radius » may be expressed
as 12v\}
r= E%(—E) 5 (37)
wa
dr = %R—‘(m”) dR. (38)
wo
Using (37) and (38), the torque (36) may be expressed as
1 12 PO
T = 2:;“’ DL ”) f [1+g(R) B dE, (39)
0

where
~ R wa?
R 0
0 12p

I

If (39) is integrated under conditions where no secondary flow exists (i.e. in the
limit of g(&)—0) the result is
Tho=T, =222 R (40)

This result can be used to normalize the expression for the torque given by (39):

2o _
I_ 1+g1?g%f g(R) B2 dR. (41)
T, 0
A new parameter 7' is now defined such that
~ ~ Ry _
7= 2(2—1) R =f g(B)R AR, (42)
3\T, 0

By differentiating (42) an expression relating g(£) and 7 results

= t d7

l9(Flz-z, = Ragr, (43)
This expression provides a means whereby the function g(&) can be measured
experimentally. Measurements of the torque T can be used to determine 7(R,) using
the values of T', 7T}, and R, as they appear in (42). Differentiation of the experimental
relation T(E,) allows computation of g(&;) using (43). It is not always accurate to
differentiate an experimentally determined function, particularly if there is much
scatter in the data. There was, however, very little seatter in the torque measurements,
as may be seen from the normalized torque values plotted in figure 9.

The method adopted here to determine g(&) experimentally rests upon a number
of assumptions.First it is implicit that there is only a single correlating parameter
R that determines the degree of departure from primary flow. Although this is
predicted by laminar theory, the success of this correlation in turbulent flow is a
conjecture until tested experimentally. A second important assumption is that end
effects do not alter the determination of g(R&) according to (43). In that context it
is the change of the total torque 7 with B, that is the determining factor. Errors from
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this source would be minimized by small cone angles, as it would be expected that
the influence of the end effects would extend into the interior flow between the cone
and plate only one or two times the gap height at the cone edge. Further consideration
will be given to this question in discussing the experimental results.

4. Results and discussion
4.1. Flow visualization

The two forces acting on the fluid in the cone-and-plate device are the centrifugal
force, caused by the circular motion of the fluid, and the viscous force, arising from
the relative motion between the cone and the plate. It is the relative magnitude of
these two forces that govern the motion and this is reflected in the parameter R. As
B0 the centrifugal force becomes negligible and the fluid streamlines, as marked
by the dye streaklines, are concentric circles about the cone apex. This type of
motion has been termed primary flow. As the value of E increases, so does the
centrifugal force ; dye streaklines at the stationary plate surface are oriented towards
the centre of the plate; this non-circular motion is termed secondary flow. An example
of a dye streakline indicating the presence of secondary flow is given in figure 3.

In order to quantify the motion of the streamlines with changing values of &, the
angle ¢ made by the tangent to the dye streakline at the point of injection and the
azimuthal direction (figure 4) was plotted as a function of . The results for a 1° cone
angle are shown in figure 5. The theoretical solution for small &,

¢ = tan™' [— 0.8 + O(R?)], (25)

is indicated by the solid line in this figure. For values of £ < 0.5 there is very good
agreement between the theoretical solution and the experimental results. Similar
results were obtained using cone angles of 3° and 5°. There was, however, some
additional scatter for data recorded at the larger cone angles. The method whereby
the dye was entrained into the gap along the flat-plate surface by the motion of the
fluid was least successful in the case of large cone angles, and the additional scatter
was attributed to this fact.

For B > 4 the transition to turbulent flow was observed by the breakup of the dye
streakline, and an example is given in figure 6. For any given rotational rate, cone
angle and fluid viscosity, the value of E increases with increasing radial position from
the centre of the flat plate outwards. Thus the first signs of transition to turbulent
flow appear at the outer radius of the plate. The turbulence then propagates inwards
towards the centre of the plate as the value of B at a fixed radius increases with
increasing cone rotational rates. Four photographs, taken during the aluminium-
particle flow-visualization experiment, are presented in figure 7 and show the progress
of the turbulent front towards the centre of the plate with increasing values of E,. It
is interesting to note that any fluid particle near the flat-plate surface will eventually
be carried inwards toward the centre of the plate and then outwards along the surface
of the cone because of the action of the secondary flow. When £, > 1 and turbulence
is present a fluid particle near the outer edge of the plate surface will travel from a
region of turbulence into a region of relaminarized flow. The radius of the sharp visual
front revealed by the aluminium flakes at the turbulent-to-laminar transition was
used to caleulate values of B, ,,¢i0n for different flow conditions with B, at the outer
radius of the plate in the range of 4 2 B, 2 40. A mean value of RmmSmon =4.0+04
was found. The turbulence, as made V1s1b1e by the suspended aluminium flakes in
figure 7, bears a striking resemblance to the analogous visualization of a turbulent
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Ficurg 3. Photograph of a dye streakline near the plate surface in secondary flow, B=08.
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(@)

(2}
FicURE 4. (a) Azimuthal (v) and radial () components of velocity near the plate surface, showing
the angle ¢. (b) Schematic representation of a surface streamline. The angle is formed between the
azimuthal and the surface directions.

boundary layer reported by Cantwell (1981), although Cantwell’s pictures exhibit
more orientation of the structure in the streamwise direction than do the pictures
included here.
4.2. Shear-stress measurements

The experimentally determined azimuthal shear-stress values 7,, are compared with
the numerical calculations of Fewell & Hellums (1977)% and the laminar theory for
R < 1, as presented in §2, in figure 8. The azimuthal shear stress has been normalized
with the primary-flow shear stress 7, = puw/a. As the calculations of Fewell & Hellums
were performed for different cone-edge conditions than those of the current experi-
mental work, their results have only been plotted for values of B corresponding to
radial locations within 2R,, which was the outermost radius of our experimental

T The local values of 7,4 from Fewell & Hellums on the cone and plate surfaces were obtained
by taking the slopes of their theoretical velocity profiles at the surfaces of the cone and plate at
different radii from the cone axis and computing the corresponding local values of £ from their
two parameters which are equivalent to B,/a? and a.
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measurements. For B < 0.5 there is good agreement between the experimental data,
the numerical calculations of Fewell & Hellums and our laminar theory based on an
expansion of the equations of motion for small E. Shear-stress measurements were
obtained for the surface of the cone from a series of torque measurements as described
in the following section. These data have also been plotted (solid line) in figure 8 and
are found to be in excellent agreement with the laminar theory and the numerical
caleulations of Fewell & Hellums for B < 0.5.

4.3. Torque measurements
Torque data obtained from the Brookfield cone—plate viscometer and normalized with
respect to the torque (40) in primary flow have been plotted as a function of R, in
figure 9. The empirical curve

T B
= 14+1.200——" 44
7~ T035RE, @4

has been fitted to these data and is indicated by the broken line in this figure. The
torque data obtained by Cheng (1968) for 1°, 2° and 4° cones have been replotted
in terms of the single parameter &, in figure 10. For B, 2 1 there is good agreement
between these data and the empirical expression (44) for the normalized torque which
is plotted as a solid line in the figure. The numerical calculations of total cone torque
by Fewell & Hellums (1977) are compared with the normalized torque expression (44)
in figure 11. In this case the calculations of Fewell & Hellums show a smaller increase
in torque than is reported in this paper. Their calculations agree more closely with
Cheng’s data. In each instance, both the theory and the experiments appear to be
adequately represented by the single parameter R.

Substituting (44) and (42) into (43), the following expression is obtained for

g(Ry): )2 5
7 b Ry
By)) =288 ———= —0.86 ——%—.
g(ko) 35+ 0 OG5 Ay (45)
Thus the normalized shear stress on the surface of the cone may be expressed, using
(35, as A R
Y =1+2. b . ———6—-.——
T = 1¥ 258 086 s Ry (46)

The result is plotted in figure 8 and labelled 1+ g(R). It is important to note that
the shear-stress component 7,4 on the cone surface is always greater than the value
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7 .

Ficurk 6. Photograph of dye streakline near plate surface in turbulent flow, £ = 16.9.
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Figure 7. Four photographs taken during aluminium-particle flow-visualization experiment
showing progress of turbulent front with increasing values of R, and the cone rotating
counterclockwise.

for primary flow; conversely the plate shear-stress component 7,4 is less than the
primary-flow value prior to the onset of turbulence.t

4.4, Velocity profiles

The laminar theory presented in §2 predicts that there will be an increasing distortion
of the azimuthal velocity profile with increasing values of £. No direct measurements
of the azimuthal velocity profile were made during the present investigation;
however, it was possible to compare the predictions of laminar theory with the
numerical calculations of Fewell & Hellums (1977).

For the present theory, the azimuthal velocity is expressed for small E as

v = wr(fy+ B0, +...),
t Note that the fotal shear stress, as experienced by a test specimen on the plate, for example,

is 7,4/cos ¢, where ¢ is the angle of the total shear-stress vector with respect to the azimuthal
direction.
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Ficure 8. Normalized azimuthal component of shear stress 7,9/(sw/a) on the cone and plate
surfaces. Comparison between the laminar theory, the numerical solutions of Fewell & Hellums
(1977), and the experimental measurements reported in this paper.
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Ficure 10. Comparison between the normalized torque data of Cheng (1968) and the analytic
fit obtained from present experiments as shown in figure 9.
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Freure 11. Comparison between the normalized torque computed from the numerical calculations
of Fewell & Hellums (1977) and an analytic fit to the present experiments as shown in figure 9.

where 7, is the non-dimensional velocity component (20) in primary flow, and £23,
is the correction (23) for the deviation of the azimuthal velocity beyond primary flow.
The corresponding velocity correction from Fewell & Hellums (1977) is the difference
between their computed velocity profile and a linear profile (primary flow) between
the plate and the cone surface.}

The present predictions of azimuthal velocity distortion ar. compared with the
corresponding results from Fewell & Hellums in figure 12. For £ = 0.44 there is good
agreement between the present analytic prediction and the numerical solution. In

1 As it was difficult to take differences between the plotted profiles in Fewell & Hellums and
straight lines, the original figures in Fewell’s Ph.D. thesis were used (see Fewell 1974).
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FicuRE 12. Comparison between the normalized second-order azimuthal-velocity correction term
and correction to a linear velocity profile (primary flow) as computed by Fewell & Hellums (1977).

this ease the numerical calculations were performed at 73 %, of the cone outer radius,
where end effects should not be important. Agreement is fair for the two pairs of curves
at B = 0.56 and B = 0.69. The maximum values of the distortion in these two cases
agree to about 159%,, and the slopes (shear-stress increments) at the cone and plate
are even more accurately predicted (to within about 10%). As & approaches unity,
however, the present analytic method based on an expansion for small £ fails to be
quantitatively accurate.

The shear-stress component 7,4 on the cone is computed from the gradient of the
azimuthal velocity. It is evident from the data presented in figure 12 that the shear
stress on the cone is larger than that on the plate at any interior radius away from
the cone edge. The velocity perturbation B3, is negative everywhere in the fluid
space; therefore the velocity gradient and surface shear stress is less than primary
flow at the plate and more than primary flow at the cone.

5. Conclusions

An analytic description of the flow in a cone-and-plate geometry has been
developed by performing an asymptotic expansion of the Navier—Stokes equations.
The single parameter of the expansion is B = r2wa/12v. The analytic flow description
appears to be accurate for small cone angles, for the portion of the flow field that
is away from the periphery of the cone, and for values of B less than about 0.5. The
fluid shear stress, the angle of the plate-surface streamlines, and the onset of
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turbulence as observed using flow-visualization continue to be describable as
functions of the single variable £ with increasing values of B. The fact that this entire
range of flow phenomena may be described by a single parameter allows a very
suceinct and compact description of the fluid motion in this device.

The present results do not attempt to describe the flow near the outer rim of the
cone, where edge effects and the precise boundary conditions are very important.
Fewell & Hellums (1977) calculated the behaviour of the flow in this region for the
case of a free-surface termination to the fluid. There are changes in the shear stresses
on the cone and plate near their outer edges that serve to equalize the torques on
the cone and plate. In contrast to the procedure of Turian {1972}, Fewell & Hellums
did not require any assumptions to achieve the required torque balance. Within the
interior of the fluid space, the azimuthal shear stress 7,5, depends only on the single
parameter R. In primary flow, i.e. for B -0, 7,4 is the same on the cone and the plate
at any given radius. As R increases, 7,, departs from its primary value; the cone shear
stress becomes more than, and the plate shear stress becomes less than, the primary
value. The quantitative predictions of the laminar theory are in good agreement with
the present shear-stress measurements for B <05,

It was not possible to measure the fluid shear stress on the cone directly. Rather,
the torque required to rotate the cone was measured and the resulting data were
differentiated to obtain the shear stress on the cone surface. This method is not
without difficulty. A major assumption is that the shear stress throughout the device
may be characterized by the single parameter E. This assumption, however, fails near
the outer edge of the device where the end conditions are important. The accuracy
of the measured shear stress is not compromised unless the derivative of the torque
is affected. The results that are reported in figure 8 suggest that the procedure is in
quantitative agreement not only with the present theory and that of Fewell &
Hellums (1977)1 but also with the data of Cheng (1968).

Turbulence appears within the fluid space for all radii associated with a local value
of R greater than 4. The fact that a single value of the parameter & correlates the
onget of turbulence for a variety of cone angles, radii, viscosities and rotational
velocities suggests that the turbulence is triggered by an instability associated with
the distorted velocity profile produced by the secondary flow. To date there have been
no detailed measurements of the velocity-fluctuation spectrum in the turbulent
region ; photographs taken of suspended aluminium flakes, however, suggest that the
turbulence does not contain any prominent discrete frequencies. The disturbance
patterns in the aluminium flakes had structures that were extended in the flow
direction in a manner similar to that observed by Cantwell (1981) at the base of a
turbulent boundary layer.

One of the interesting features of this geometry is the relaminarization of the flow
near the plate surface. The secondary motion sustained by centrifugal force circulates
fluid outward near the cone surface and inward near the plate surface. Streamlines
are deviated inward from the azimuthal direction by approximately 45° at the plate
surface for values of £ exceeding unity. Fluid near the cone will therefore travel from
the inner part of the device, where E < 1, into a region where B > 4 and the flow
is turbulent. Conversely, fluid near the plate will move from a region of turbulence
to a region where the flow is essentially laminar. This ‘relaminarization’ is an
intriguing phenomenon and deserves further study. There are only a few instances
in which relaminarization has been observed (see e.g. Coles & Van Atta 1967;

t The points on figure 8 from Fewell & Hellums are obtained from the slopes of the velocity
profiles that they computed and represent radial positions away from the outer edge of the cone.
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Narasimha & Sreenivasan 1973; Wygnanski & Champaigne 1973; Wygnanski,
Sokolov & Friedman 1975). It is evident in figure 7 that the turbulent front is very
sharp and that the fluid goes from gross manifestations of turbulence to essentially
laminar flow in a distance in the flow direction of a few gap heights.

The cone-and-plate flow was investigated for the purpose of assessing the influence
of fluid shear stress on living biological samples. One attractive feature of the
cone-and-plane geometry is the possibility of producing both laminar and turbulent
flow with the same time-mean shear stress in a single device. Using (33), (35) may
be rewritten for the plate surface as

_ pw L +k(R)
T a COS¢ » (47)
or, dividing both sides by R,
7 2,2
Rcos¢p  priw*a (48)

L+e(B) ™ 121,

The term k(R) measures the decrease of the plate shear-stress component 7,, below
the value for primary flow, and is defined as the departure from unity of 7.,/ (uw/ax)
on the plate, as illustrated in figure 8.

The angle ¢ is a smoothly varying function of r as defined by figure 5. The left-hand
side of (48) is therefore a smoothly varying single-valued function of £ whose value
is strictly equal to R at small values of E and something slightly less than E for larger
values of B. With the value of 7,, fixed, the value of R can be changed from 0.5
(associated with laminar flow) to 4 (indicative of turbulent flow) by increasing the
radius of the observation point by 4/2, increasing the rotational rate by the same
factor, doubling the cone angle, and adjusting the fluid viscosity slightly to
compensate for the variation of the terms k(&) and ¢. Thus a variety of shear-stress
levels can be created with alternative conditions producing either laminar or
turbulent flow. This property may prove usefulfor other fluid-dynamical investigations
as well.

This research was supported by the Whitaker Health Services Fund and the
National Heart, Lung and Blood Institute (HL 25536, HL 21859).

Appendix. Asymptotic expansion of the equations of motion for
cone-and-plate flow

The simplified Navier—Stokes equations (8)—(11) for cone-and-plate flow are
repeated below:
v? 13p Q%

; —_— = T Al
r-momentum . oo Vg (A1)
2
6-momentum ua—v+—u—v+w%= v§—v, (A2)
or r dz 0z2
19p  S*w
z-momentum 0= — ;5; +V€27, (A 3)
.. ou u w
continuity N + - + Fri 0. (A 4)

The boundary conditions of no slip at the cone or plate surface can be expressed as
follows (for a < 1):

u=v=w=0 (z=0), } (A 5)

u=w=0, v=ru (z=ra).



400 H. P. Sdougos, S. R. Bussolari and C. F. Dewey

Before solving the equations of motion, the following transformation of variables

is performed:

. L. U N w z

T=—, d=—, Ww=—01) =—, F=7. (A 6)
wr wr awr ra

W

The three velocity components @, @, @ are assumed to be of the following form:

i = (g + R, + Ry + ...), (A7)
5= (By+ o, + B, + ...), (A 8)
W = (W + R, + R¥p,+ ...), (A 9)

where the expansion parameter F is defined as

(A 10)

and 4y, 4, ..., ¥, ..., Wy, ..., are normalized components of velocity.
Using these transformed variables, the Navier-Stokes equations (A 1)—(A 4) may
be rewritten as

2% - For2 O
r-momentum Q—Qf +12R%%— E-f% =0, (A 11)
022 pw OF
0% = oo ov
: — 05+ Fll— + (D —03) — | = A12
f-momentum 37 12R[2uv+ il + (D —47) % 0, ( )
w1 Op (A 13)
z-momentum P w07 =0,
ou  _ou oW
inui P — 23— +d+ =—=0. A4
continuity i +a+ PR ( )
The transformed boundary conditions at the cone and plate surface are
Gg= == ...= ,1
To=0,=0,=...=0, (Z2=10); (A 15qa)
Wy =W, =W, =...=0
QZO =4, = 17,2 = =0,
?,T) = ?,T) = ., = =0,
o (F=1). (A 15b)
Ty =1,
5 =P, =..=0

The transformed Navier—Stokes equations may now be solved by the method of
asymptotic expansion. The normalized velocity components (A 7)—(A 9) are sub-
stituted into (A 11)-(A 14). The terms in each of the resulting equations are then
grouped according to their order of magnitude:

12 ap] P ~]
pwF OF + [327—?241;01;1

+B3...]+...=0, (A16)

0% ~ 0%
r-momentum [ 62‘20] +R[ 62'21 +1252 —
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f-momentum P%‘J +R[a;; tho Ty — 1274 Oaaii —12% Oaav:) + 1224, %5;]
+R2[%2% — 2441, ¥, — 244, T, — 1274, aai — 1277, %’;" —1217;0%%
—12@1%%“2,? aa” 1274, aa~]+R3[ J+..=0, (A17)
z-momentum l:a;;’o — /—LIB %’;—jl I?l:a;gljl + B2 l:aazzzzjl +/..]=0, (A18)
continuity [r%% —z%’%" + 24, + %} +R[F%7’Fi —z-a% +44, + %ﬁﬂ

om, 0@ v
+R2[F—1? ~z% + 6, + a%ﬂ +BL.]+...=0. (A19)

Each grouping on the left-hand side of each of (A 16)~(A 19) may be set equal to zero,
allowing solutions to be obtained for each of the velocity components. These solutions
are now presented.

Zeroth-order solutions: O(R)

From (A 16)-(A 19) the following zeroth-order equations are formed:

T, (A 20)
-, (A 21)
fa—au;—" aa“j’ +24 l)+aaw° 0. (A 23)

The solutions to (A 20)—(A 23) for the boundary conditions (A 15) are
U, =0, 9y=2 @W=0. (A 24)

It should be noted that using @, = 0 and (A 22) results in

op
e
and hence » = plr). (A 25)

Equation (A 24) and (A 25) describe conditions of primary flow.
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First-order solution: O(RY)

From (A 16)—(A 19) the following first-order equations are formed after substitution
of (A 24) and (A 25):

0%, . 12 dp
e + 122 PP 0, (A 26)
0%,
P 0, (A 27)
%D,
= 0, (A 28)
Lo, _Od, _ 0l
TaF Zagz +4u1+¥—0. (A 29)
Integrating (A 26) twice and applying the no-slip boundary condition (A 15) gives
i, =L1¥P2—-340%, (A 30)
where
_ 12 dp
T pwiF dF’

and C is a constant of integration which may be evaluated from the continuity
equation by noting that the net radial flow integrated across the gap height is zero:

Z=1
J. #,dz=0.
Z=0

The boundary and continuity conditions together give ¥ = 3.6 and €' = —0.8. Thus
the first-order radial velocity (A 30) may finally be written
@ = 1.822—-2'—0.82. (A 31)

This non-dimensional radial velocity profile is of order unity and has been plotted
in figure 2. The choice of the factor of 12 in the definition (A 10) of R enables the
ratio of the secondary to primary flows to be expressed as

1= R(1.82——0.8). (A 32)

c@l\ £

As the bracketed expression in (A 32) is of order unity, & is a true measure of the
degree of secondary flow.

From (A 27) and boundary conditions (A 15) the normalized first-order azimuthal
component of velocity #, is found to be identically equal to zero.

The first-order vertical velocity component @, may be obtained by substituting
the expression (A 31) for @, into the first-order continuity equation (A 29). After
simplification, (A 29) becomes

o,

0z

= —3.622+2.43. (A 33)

Integrating (A 33) with the boundary condition (A 15) gives the following expression
for W, = 1.2(2~ ). (A 34)
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Second-order solution : O(R?)

From (A 16)—(A 19), after substitution of the zeroth-order velocity components
(A 24), and noting that the first-order azimuthal velocity component #, is equal to
zero, the following second-order equations are formed:

%,

=0, (A 35)
a—g;_z — 2441, ¥, — 1217;1%% + 125&1%559 =0, (A 36)
T, (A 37)

Fa;gz —sa—a’;ﬁ + 63, + %%2 =0. (A 38)

From (A 35), (A 37) and the boundary conditions (A 15) the two terms %, and @, are
found to be identically equal to zero.
After substituting the first-order components #%,, (A 31), and #%,;, (A 34), into
(A 36) and simplifying, the following result is obtained:
&5 _ 12(0.42% +0.62° — 2°) (A 39)
0z? ’ ’ '
Integrating this expression twice and using the boundary conditions (A 15), the
following expression is obtained for @,:

@, = h5(— 832+ 702+ 632° — 507). (A 40)
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